Home > Events > Seminars > Solvay Colloquium; FRIDAY 21 February at 4:00 p.m. in the Solvay room (...)

Solvay Colloquium; FRIDAY 21 February at 4:00 p.m. in the Solvay room (ULB, campus plaine, 5th Floor).

Friday 21 February 2014, by Alexandra Peereboom

The next Solvay Colloquium will be held on FRIDAY 21 February at 4:00 p.m. in the Solvay room (ULB, campus plaine, 5th Floor).

Speaker: Professor Dan Shechtman (Technion, Haifa, Israel and ISU, Ames, Iowa, USA)

Title: THE DISCOVEY OF QUASI-PERIODIC MATERIALS

Abstract: Crystallography has been one of the mature sciences. Over the years, the modern science of crystallography that started by experimenting with x-ray diffraction from crystals in 1912, has developed a major paradigm – that all crystals are ordered and periodic. Indeed, this was the basis for the defini-tion of “crystal” in textbooks of crystallography and x-ray diffraction. Based upon a vast number of experimental data, constantly improving research tools, and deepening theoretical understanding of the structure of crystalline materials no revolution was anticipated in our understanding the atomic or-der of solids.

However, such revolution did happen with the discovery of the Icosahedral phase, the first quasi-periodic crystal (QC) in 1982, and its announce-ment in 1984 [1, 2]. QCs are ordered materials, but their atomic order is quasiperiodic rather than periodic, enabling formation of crystal symmetries, such as icosahedral symmetry, which cannot exist in periodic materials. The discovery created deep cracks in this paradigm, but the acceptance by the crystallographers’ community of the new class of ordered crystals did not happen in one day. In fact it took almost a decade for QC order to be accepted by most crystallographers. The official stamp of approval came in a form of a new definition of “Crystal” by the International Union of Crystallographers. The paradigm that all crystals are periodic has thus been changed. It is clear now that although most crystals are ordered and periodic, a good number of them are ordered and quasi-periodic.

While believers and nonbelievers were debating, a large volume of experimental and theoretical studies was published, a result of a relentless effort of many groups around the world. Quasi-periodic materials have developed into an exciting interdisciplinary science.

This talk will outline the discovery of QCs and describe the important role of electron microscopy as an enabling discovery tool.

[1] D. Shechtman, I. Blech, Met. Trans. 16A (June 1985) 1005-1012.
[2] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Letters, Vol 53, No. 20 (1984) 1951-1953.

D. Shechtman

Everybody is cordially invited!

Best wishes,

Marc Henneaux
Université Libre de Bruxelles & International Solvay Institutes
Campus Plaine CP 231 - Boulevard du Triomphe
B-1050 Brussels – Belgium